Shear Strain
Change in
angle between line segments oriented in perpendicular directions \( n \) and \( t \):
Fig: Avg Shear Strain Average shear strain
$$ \gamma_{nt} = lim_{\begin{matrix} B \xrightarrow{} A \rm\ along \rm\ n\\ C \xrightarrow{} A \rm\ along \rm\ t \end{matrix}} (\frac{\pi}{2} - \theta') \ $$
When strains are small, the small angle approximation, \( \sin(\theta)\approx \theta \), results in
$$ \gamma = \frac{\pi}{2} - \theta \approx \frac{\delta}{L}\ $$